|
アンドウ エイ
ANDO Ei
安藤 映 所属 専修大学 ネットワーク情報学部 職種 准教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2019/04 |
| 形態種別 | 研究論文(学術雑誌) |
| 査読 | 査読あり |
| 標題 | The Volume of a Crosspolytope Truncated by a Halfspace |
| 執筆形態 | 共著 |
| 掲載誌名 | Lecture Notes in Computer Science, Springer |
| 掲載区分 | 国外 |
| 巻・号・頁 | 11436,pp.13-27 |
| 総ページ数 | 15 |
| 著者・共著者 | Ei Ando, Shoichi Tsuchiya |
| 概要 | In this paper, we consider the computation of the volume
of an n-dimensional crosspolytope truncated by a halfspace. Since a crosspolytope has exponentially many facets, we cannot efficiently compute the volume by dividing the truncated crosspolytope into simplices. We show an O(n^6) time algorithm for the computation of the volume. This makes a contrast to the 0−1 knapsack polytope, whose volume is #P-hard to compute. The paper is interested in the computation of the volume of the truncated crosspolytope because we conjecture the following question may have an affirmative answer: Does the existence of a polynomial time algorithm for the computation of the volume of a polytope K imply the same for K’s geometric dual? We give one example where the answer is yes. |
| DOI | https://doi.org/10.1007/978-3-030-14812-6_2 |